Fischerindole L, a New Isonitrile from the Terrestrial Blue-Green Alga Fischerella muscicola

Aeri Park, Richard E. Moore,* and Gregory M. L Patterson

Department of Chemistry, University of Hawaii, Honolulu, Hawaii 96822, U.S.A.

Abstract. Fischerindole L (3) is a novel octahydroindeno[2,1-b]indole isonitrile from the terrestrial cyanophyte *Fischerella muscicola* that possesses the same relative stereochemistry as hapalindole L (4).

In evaluating hundreds of laboratory-cultured blue-green algac (cyanobacteria) for antifungal activity, the extract (70% ethanol) of *Fischerella muscicola* (Thuret) Gomont (UTEX 1829) was found to inhibit the growth of four test fungi, viz. *Aspergillus oryzae*, *Penicillium notatum*, *Saccharomyces cerevisiae*, and *Trichophyton mentagrophytes*, in a soft-agar disc-diffusion assay (250 μ g, 10-17 mm zones). Using a bioassay-guided isolation scheme,¹ most of the antifungal activity was associated with an indole alkaloid fraction. Hapalindoles A (1)² and J (2)³ and fontonamide⁴ were the major components in this mixture by HPLC analysis. In addition a new antifungal⁵ tetracyclic alkaloid, fischerindole L (3), possessing a hexahydroindeno[2,1-*b*]indole ring system and an isonitrile functionality, and having the same relative stereochemistry as hapalindole L (4),³ was present. We present here the isolation and structure determination of **3**.

The UV spectrum of **3** was typical of an indole and the EI mass spectrum, coupled with NMR data, established that **3** had the same elemental composition ($C_{21}H_{23}CIN_2$) as **1** and **4**.⁶ Inspection of the ¹H and ¹³C NMR spectra in acetone- d_6^6 indicated that an *o*-disubstituted benzenoid ring, a vinyl and three methyl groups attached to quarternary carbons, and a CHeqX-CHeq-CHax-CH₂-CHaxY unit in a six-membered ring were present. Since the H-11 (4.36 ppm) and C-11 (63.5 ppm) signals showed a 1:1:1 coupling (to ¹⁴N) pattern and a HMBC cross peak between the H-11 and isonitrile carbon (160.2 ppm) signals, X had to be the isocyano group and this meant that Y was the chloro group. The HMBC experiment also showed that a quaternary carbon (C-12) bearing methyl and vinyl substituents was between CHeqNC and CHaxCl as ²J and ³J cross peaks were clearly visible between the H-11 and C-3/C-10/C-12/C-13/C-15/C-19/C-20 signals and the H-13 and C-12/C-14/C-15/C-19/C-20 signals. The cyclohexane ring was connected to the indole C-3 via C-10 on the basis of HMBC couplings between the H-10 and C-2/C-3/C-11/C-12/C-14/C-15 signals. Long-range zig-zag coupling between H-21*E* and H-13 (0.7 Hz) strongly suggested that C-12 had the S* configuration (same as in 4³), not *R* as in 1.³

Since the signal for H-2 was missing, the molecular skeleton for 3 had to differ from 1 in having C-16, the gemdimethyl carbon, attached to C-2 instead of to C-4. This connection was supported by ³J-couplings (HMBC cross peaks) between the gem-dimethyl protons and C-2/C-15/C-16. In 3 H-14ax was no longer located over the aromatic system as close as in 1, resulting in a significant paramagnetic shift of the H-14ax signal with virtually no effect on the C-14 chemical shift. Irradiation of the C-19 methyl protons in a difference NOE experiment induced strong positive NOEs in the H-11, H-13 and H-21Z signals, but not in the H-4 and H-14ax signals, and irradiation of H-11 produced significant NOEs in the H-4 and H-20 signals. Strong NOEs between the H₃-17 and H₂-14 signals and between the H₃-18 and H-15 signals provided further proof for the stereochemistry depicted in 3.

On standing in chloroform-*d* for a few days, 3 was converted to the corresponding fischerindole L formamide (5).⁷ The ¹H NMR spectrum indicated that 5 existed as two conformational isomers in solution, the major conformer being the *E*-formamide ($J_{22,23} = 11.5$ Hz) and the minor conformer being the *Z*-formamide ($J_{22,23} = 1.5$ Hz).

Fischerindole L is the first octahydroindeno[2,1-b]indole⁸ to be isolated from a blue-green alga. Interestingly we had found earlier⁹ that hapalindole C formamide (6) from *Hapalosiphon fontinalis* V-3-1 could be transformed into a 2:1:1 mixture of octahydroindeno[2,1-b]indoles 7 and 8 and hapalindole C amine (9) in the presence of strong acid. Hapalindole E formamide (10), however, did not cyclize under similar conditions and only hapalindole E amine (11) was formed. Neither 9 nor 11 could be coverted into a octahydroindeno[2,1-b]indole on further treatment with acid. Fischerindole-type compounds could not be detected in *H. fontinalis*.⁹

Schwartz et al.¹⁰ have reported the isolation of a new tricyclic hapalindole (12) from *Fischerella* sp. ATCC 53558 which could be the biosynthetic precursor of both 3 and 4 (Scheme 1).

Scheme 1. Possible biogenesis of fischerindole L and hapalindole L.¹¹

In addition to 12, cyclopropane-containing hapalindolinones have been isolated from *Fischerella* sp. ATCC 53558.¹² Ambiguine isonitriles, which possess an additional isoprene unit, have been isolated from *F*. *ambigua* UTEX 1903.¹³

Acknowledgement. This research was supported by NSF Grants CHE88-00527 and CHE90-24748. We thank Wesley Y. Yoshida for technical assistance in the NMR studies.

References and Notes

Fischerella muscicola (UTEX 1829) was purchased from the University of Texas Collection. Mass cultivation of the axenic alga was carried out in 20-L glass bottles using the procedure described for Hapalosiphon fontinalis.³ After 12 to 14 days, the alga was harvested by filtration and freeze-dried. Yields of lyophilized alga were typically 0.35 g/L. The freeze-dried alga (20 g) was extracted x 3 with 1 L portions of 70% EtOH and the filtered extract was evaporated to give a green solid (3 g). The crude extract was chromatographed on a 5.2 x 9.5 cm column of silica gel with 1:4 CH₂Cl₂/hexane (200 mL), 3:1 CH₂Cl₂/hexane (400 mL), CH₂Cl₂,(400 mL), and 1:1 MeOH/CH₂Cl₂ (400 mL). The material in the 3:1 CH₂Cl₂/hexane fraction (0.31 g) was further chromatographed on a 2.7 x 3.2 cm column of C18 with 50 mL portions of 1:1 MeOH/H₂O, 3:1 MeOH/H₂O, 9:1 MeOH/H₂O, and MeOH. Gradient HPLC of the 3:1 MeOH/H₂O fraction (50 mg) on silica (Whatman Partisil) with 17:3 to 1:1 hexane/EtOAc gave a 1:1 mixture (5 mg) of fischerindole L (4) and an unidentified indole followed by fontonamide (6 mg),

hapalindole J (7 mg), and hapalindole A (1, 14 mg). Pure 4 was obtained by further HPLC on silica with 7:3 CH₂Cl₂/hexane.

- 2. Moore, R. E.; Cheuk, C.; Patterson, G. M. L. J. Am. Chem. Soc. 1984, 106, 6456.
- Moore, R. E.; Cheuk, C.; Yang, X.-Q. G.; Patterson, G. M. L.; Bonjouklian, R.; Smitka, T. A.; Mynderse, J. S.; Foster, R. S.; Jones, N. D.; Swartzendruber, J. K.; Decter, J. B. J. Org. Chem. 1987, 52, 1036.
- 4. Moore, R. E., Yang, X-Q. G., and Patterson, G. M. L. J. Org. Chem. 1987, 52, 3773.
- 5. The antifungal activity of 3 was not studied in detail since it appeared to be similar to 1 and other hapalindoles in a soft-agar disc-diffusion assay.
- 6. Fischerindole L isonitrile (3). EIMS m/z (rel int, composition) 338/340 (70/22, C₂₁H₂₃³⁵ClN₂/C₂₁H₂₃³⁷ClN₂), 323/325 (30/10, C₂₀H₂₀³⁵ClN₂/C₂₀H₂₀³⁷ClN₂), 303 (27, C₂₁H₂₃N₂), 183 (100, C₁₃H₁₃N resulting from cleavage of C10-C11 and C14-C15 bonds); HREIMS m/z 338.1545 (Δ -0.5 mmu); UV (MeOH) λ_{max} 220 nm (ϵ 38000), 278 (6800), sh 290 (5000); ¹H NMR (500 MHz, acetone-d₆) δ 10.20 (br s, indole NH), 7.54 (dbrm, J = 8.0 Hz, H-4), 6.95 (ddd, J = 8.0, 7.0 and 1.2 Hz, H-5), 7.00 (ddd, J = 8.0, 7.0 and 1.2 Hz, H-6), 7.29 (dbrm, J = 8.0 Hz, H-7), 3.74 (t, J = 6.7 Hz, H-10), 4.36 (dbrt, J_{10,11} = 6.7 Hz, J_{H,N} ~ 2 Hz, H-11), 4.29 (dd, J = 12.2 and 4.6 Hz, H-13), 2.15 (dt, J = 13.2 and 12.2 Hz, H-14ax), 2.12 (ddd, J = -13.2, 7.6 and 4.6 Hz, H-14eq), 2.92 (m, H-15), 1.39 (s, H₃-17), 1.31 (s, H₃-18), 1.47 (s, H₃-19), 5.92 (dd, J = 17.4 and 11.0 Hz, H-20), 5.28 (dd, J = 17.4 and 0.7 Hz, H-21Z), 4.96 (dbrt, J = 11.0 and 0.7 Hz, H-21E); ¹³C NMR (125 MHz, acetone-d₆) δ (¹J multiplicity, carbon position) 152.0 (s, C-2), 116.7 (s, C-3), 120.4 (d, C-4), 119.8 (d, C-5), 121.2 (d, C-6), 112.5 (d, C-7), 141.8 (s, C-8), 125.3 (s, C-9), 42.9 (d, C-10), 63.5 (d of 1:1:1 t, J_{CN} = 6 Hz, C-11), 44.9 (s, C-12), 65.0 (d, C-13), 31.9 (t, C-14), 53.7 (d, C-15), 42.3 (s, C-16), 23.5 (q, C-17), 27.3 (q, C-18), 21.9 (q, C-19), 138.2 (d, C-20), 116.6 (t, C-21), 160.2 (s of vbr 1:1:1 t, C-23).
- 7. Fischerindole L formamide (5). EIMS m/z (rel int, composition) 356/358 (3/1, $C_{21}H_{25}^{35}CIN_{20}/C_{21}H_{25}^{37}CIN_{20}$), 311/313 (42/12, $C_{20}H_{22}^{35}CIN/C_{20}H_{22}^{37}CIN$), 276 (100, $C_{20}H_{22}N$); UV (MeOH) λ_{max} 224, 276; HREIMS m/z 356.1650 ($C_{21}H_{25}^{35}CIN_{20}$, Δ -0.5 mmu). ¹H NMR (500 MHz, CDCl₃) δ_{E}/δ_{Z} 7.86/7.80 (br s, indole NH), 7.36/7.41 (dbrm, J = 7.8 Hz, H-4), 7.10/6.94 (ddd, J = 7.8, 7.2 and 1.2 Hz, H-5), 7.10/6.98 (ddd, J = 8.0, 7.2 and 1.2 Hz, H-6), 7.30/7.28 (dbrm, J = 8.0 Hz, H-7), 3.30/3.33 (ddt, J = 10.5, 8.3/7.3 Hz, H-10), 3.42/4.77 (t/dd, J = 10.5, 7.0/10.5 Hz, H-11), 4.003/4.000 (dd, J = 12.7 and 3.3 Hz, H-13), 2.23/2.28 (q/q, J = -13.0, 12.7, 12.0/-13.0, 12.7, 12.3 Hz, H-14ax), 2.10/2.08 (m, H-14eq), 2.89/2.72 (dt/dt, J = 12.0, 7.9/12.3, 6.8 Hz, H-15), 1.35/1.39 (s, H₃-17), 1.37/1.29 (s, H₃-18), 1.32/1.33 (s, H₃-19), 5.95/5.98 (dd, J = 17.3 and 11.0 Hz, H-20), 5.10/5.185 (brdd, J = 17.3 and 0.7 Hz, H-21Z), 5.180/5.01 (dbrt, J = 11.0 and 0.7 Hz, H-21E), 5.90/5.64 (btt/brd, formamide NH = H-22), 7.62/8.17 (d/d, J = 1.5/11.5 Hz, H-23); NOE correlations δ_{E}/δ_{Z} 1.35/1.39 (2.23/2.28), 1.37/1.29 (2.89/2.72), 1.32/1.33 (5.10/5.185, 3.42/4.77, 4.003/4.000), 4.77 (7.41), 3.42 (7.62).
- Yuehchukene is another example of a naturally-occurring indeno[2,1-b]indole. Kong, Y.-C.; Cheng, K.-F.; Cambie, R. C.; Waterman, P. G. J. Chem. Soc., Chem. Commun. 1985, 47.
- 9. Bonjouklian, R.; Moore, R. E.; Patterson, G. M. L. J. Org. Chem. 1988, 53, 5866. In this paper (1) the structures for 9 and 11 have been drawn incorrectly and (2) indeno[2,1-b]indoles 7 and 8 are referred to inappropriately as hexahydro derivatives. Compounds 7 and 8 are 5,6,6a,7,8,9,10,10a-octahydro-indeno[2,1-b]indoles.
- 10. Schwartz, R. E.; Hirsch, C. F.; Sesin, D. F.; Flor, J. E.; Chartrain, M.; Fromtling, R. E.; Harris, G. H.; Salvatore, M. J.; Liesch, J. M.; Yudin, K. J. Ind. Microbiol. 1990, 5, 113.
- 11. The Z-isomer of the proposed tryptophan-derived intermediate, E- β -isocyanostyrene, has been isolated from a *Pseudomonas* sp. (antibiotic B371) [Evans, J. R.; Napier, E. J.; Yates, P. J. Antibiotics **1976**, 29, 850].
- 12. Schwartz, R. E.; Hirsch, C. F.; Springer, J. P.; Pettibone, J. P.; Zink, D. L. J. Org. Chem. 1987, 52, 3706.
- 13. Smitka, T. A.; Bonjouklian, R.; Doolin, L.; Jones, N. D.; Deeter, J. B.; Yoshida, W. Y.; Prinsep, M. R.; Moore, R. E.; Patterson, G. M. L. J. Org. Chem. **1992**, 57, 857.

(Received in USA 26 February 1992)